Transformation to Canonical Form

Consider $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with a, b, c, and d real numbers. Let λ_{1} and λ_{2} be the eignevalues of A with the corresponding eigenvectors V_{1} and V_{2}, respectively.

1. λ_{1} and λ_{2} are real-valued and $\lambda_{1} \neq \lambda_{2}$. Let T be the matrix whose columns are V_{1} and $V_{2}: T=\left(V_{1} V_{2}\right)$. Then $T^{-1} A T=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$.
2. $\lambda=\lambda_{1}=\lambda_{2}$.
(a) V_{1} and V_{2} are linearly independent. In this case A is already in its canonical form: $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$.
(b) V_{1} and V_{2} are not linearly independent. Let V be V_{1} or V_{2} and let U be a solution of the matrix equation $(A-\lambda I) U=V$. Let T be the matrix whose columns are V and $U: T=(V U)$. Then $T^{-1} A T=\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)$.
3. λ_{1} and λ_{2} are complex-valued: $\lambda_{1}, \lambda_{2}=\alpha \pm i \beta$ with $\beta \neq 0$. Let T be the matrix whose columns are $\operatorname{Re} V_{1}$ and $\operatorname{Im} V_{1}: T=\left(\operatorname{Re} V_{1} \operatorname{Im} V_{1}\right)$. Then $T^{-1} A T=$ $\left(\begin{array}{cc}\operatorname{Re} \lambda_{1} & \operatorname{Im} \lambda_{1} \\ -\operatorname{Im} \lambda_{1} & \operatorname{Re} \lambda_{1}\end{array}\right)$.

Eigenvalues and Eigenvectors of Canonical 2×2 Matrices

\begin{tabular}{|c|c|c|}
\hline Matrix \& Eigenvalues \& Eigenvectors

\hline $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$ \& λ_{1}

λ_{2} \& $\binom{1}{0}$
$\binom{0}{1}$

\hline $\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ \& λ \& $\binom{1}{0}$

\hline $\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right), \beta \neq 0$ \& $\alpha+i \beta$
$\alpha-i \beta$ \& $\binom{1}{i}$
$\binom{1}{-i}$

\hline
\end{tabular}

